Telegram Group & Telegram Channel
Что вы знаете об алгоритме агломеративной кластеризации?

Агломеративная кластеризация — это метод иерархической кластеризации, при котором кластеры постепенно объединяются. Алгоритм начинается с того, что каждый объект рассматривается как отдельный кластер. На каждом шаге объединяются два кластера, для которых метрика объединения показывает максимальное улучшение. Процесс продолжается до тех пор, пока объединение остаётся выгодным по выбранному критерию.

Этот подход часто используется, когда необходимо получить иерархическую структуру кластеров. Преимущество алгоритма заключается в его гибкости: он не требует предположений о количестве кластеров и может работать с любой метрикой сходства.

Однако у метода есть и недостатки: базовая реализация имеет высокую вычислительную сложность, особенно на больших наборах данных. Чтобы снизить сложность, применяются различные оптимизации, например, аддитивные свойства метрик и выборочные пересчёты значений для уменьшения количества операций.

На практике агломеративная кластеризация применяется в задачах, где данные не обязательно находятся в метрическом пространстве, например, при работе с текстами или графами, где сходства между объектами могут быть асимметричными или разреженными.

#машинное_обучение



tg-me.com/ds_interview_lib/697
Create:
Last Update:

Что вы знаете об алгоритме агломеративной кластеризации?

Агломеративная кластеризация — это метод иерархической кластеризации, при котором кластеры постепенно объединяются. Алгоритм начинается с того, что каждый объект рассматривается как отдельный кластер. На каждом шаге объединяются два кластера, для которых метрика объединения показывает максимальное улучшение. Процесс продолжается до тех пор, пока объединение остаётся выгодным по выбранному критерию.

Этот подход часто используется, когда необходимо получить иерархическую структуру кластеров. Преимущество алгоритма заключается в его гибкости: он не требует предположений о количестве кластеров и может работать с любой метрикой сходства.

Однако у метода есть и недостатки: базовая реализация имеет высокую вычислительную сложность, особенно на больших наборах данных. Чтобы снизить сложность, применяются различные оптимизации, например, аддитивные свойства метрик и выборочные пересчёты значений для уменьшения количества операций.

На практике агломеративная кластеризация применяется в задачах, где данные не обязательно находятся в метрическом пространстве, например, при работе с текстами или графами, где сходства между объектами могут быть асимметричными или разреженными.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/697

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA